windows编译tensorflow tensorflow单机多卡程序的框架 tensorflow的操作 tensorflow的变量初始化和scope 人体姿态检测 segmentation标注工具 tensorflow模型恢复与inference的模型简化 利用多线程读取数据加快网络训练 tensorflow使用LSTM pytorch examples 利用tensorboard调参 深度学习中的loss函数汇总 纯C++代码实现的faster rcnn tensorflow使用记录 windows下配置caffe_ssd use ubuntu caffe as libs use windows caffe like opencv windows caffe implement caffe model convert to keras model flappyBird DQN Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks Fast-style-transfer tensorflow安装 tensorflow DQN Fully Convolutional Models for Semantic Segmentation Transposed Convolution, Fractionally Strided Convolution or Deconvolution 基于tensorflow的分布式部署 用python实现mlp bp算法 用tensorflow和tflearn搭建经典网络结构 Data Augmentation Tensorflow examples Training Faster RCNN with Online Hard Example Mining 使用Tensorflow做Prisma图像风格迁移 RNN(循环神经网络)推导 深度学习中的稀疏编码思想 利用caffe与lmdb读写图像数据 分析voc2007检测数据 用python写caffe网络配置 ssd开发 将KITTI的数据格式转换为VOC Pascal的xml格式 Faster RCNN 源码分析 在Caffe中建立Python layer 在Caffe中建立C++ layer 为什么CNN反向传播计算梯度时需要将权重旋转180度 Caffe使用教程(下) Caffe使用教程(上) CNN反向传播 Softmax回归 Caffe Ubuntu下环境配置

用tensorflow和tflearn搭建经典网络结构

2016年11月07日

用tensorflow和TFLearn搭建经典的神经网络

AlexNet

“ImageNet Classification with Deep Convolutional Neural Networks”是Hinton和他的学生Alex Krizhevsky在12年ImageNet Challenge使用的模型结构,刷新了Image Classification的记录,从此deep learning在Image这块开始一次次超越state-of-art,甚至超越了人类的水平。

import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
import tensorflow as tf
# 定义网络超参数
learning_rate = 0.001
training_iters = 200000
batch_size = 64
display_step = 20
# 定义网络参数
n_input = 784 # 输入的维度
n_classes = 10 # 标签的维度
dropout = 0.8 # Dropout 的概率
# 占位符输入
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32)
# 卷积操作
def conv2d(name, l_input, w, b):
    return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(l_input, w, strides=[1, 1, 1, 1], padding='SAME'),b), name=name)
# 最大下采样操作
def max_pool(name, l_input, k):
    return tf.nn.max_pool(l_input, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME', name=name)
# 归一化操作
def norm(name, l_input, lsize=4):
    return tf.nn.lrn(l_input, lsize, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name=name)
# 定义整个网络 
def alex_net(_X, _weights, _biases, _dropout):
    # 向量转为矩阵
    _X = tf.reshape(_X, shape=[-1, 28, 28, 1])
    # 卷积层
    conv1 = conv2d('conv1', _X, _weights['wc1'], _biases['bc1'])
    # 下采样层
    pool1 = max_pool('pool1', conv1, k=2)
    # 归一化层
    norm1 = norm('norm1', pool1, lsize=4)
    # Dropout
    norm1 = tf.nn.dropout(norm1, _dropout)
    # 卷积
    conv2 = conv2d('conv2', norm1, _weights['wc2'], _biases['bc2'])
    # 下采样
    pool2 = max_pool('pool2', conv2, k=2)
    # 归一化
    norm2 = norm('norm2', pool2, lsize=4)
    # Dropout
    norm2 = tf.nn.dropout(norm2, _dropout)
    # 卷积
    conv3 = conv2d('conv3', norm2, _weights['wc3'], _biases['bc3'])
    # 下采样
    pool3 = max_pool('pool3', conv3, k=2)
    # 归一化
    norm3 = norm('norm3', pool3, lsize=4)
    # Dropout
    norm3 = tf.nn.dropout(norm3, _dropout)
    # 全连接层,先把特征图转为向量
    dense1 = tf.reshape(norm3, [-1, _weights['wd1'].get_shape().as_list()[0]]) 
    dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'], name='fc1') 
    # 全连接层
    dense2 = tf.nn.relu(tf.matmul(dense1, _weights['wd2']) + _biases['bd2'], name='fc2') # Relu activation
    # 网络输出层
    out = tf.matmul(dense2, _weights['out']) + _biases['out']
    return out
# 存储所有的网络参数
weights = {
    'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64])),
    'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128])),
    'wc3': tf.Variable(tf.random_normal([3, 3, 128, 256])),
    'wd1': tf.Variable(tf.random_normal([4*4*256, 1024])), #这的4*4需要根据图像尺寸计算一下
    'wd2': tf.Variable(tf.random_normal([1024, 1024])),
    'out': tf.Variable(tf.random_normal([1024, 10]))
}
biases = {
    'bc1': tf.Variable(tf.random_normal([64])),
    'bc2': tf.Variable(tf.random_normal([128])),
    'bc3': tf.Variable(tf.random_normal([256])),
    'bd1': tf.Variable(tf.random_normal([1024])),
    'bd2': tf.Variable(tf.random_normal([1024])),
    'out': tf.Variable(tf.random_normal([n_classes]))
}
# 构建模型
pred = alex_net(x, weights, biases, keep_prob)
# 定义损失函数和学习步骤
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# 测试网络
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# 初始化所有的共享变量
init = tf.initialize_all_variables()
# 开启一个训练
with tf.Session() as sess:
    sess.run(init)
    step = 1
    # Keep training until reach max iterations
    while step * batch_size < training_iters:
        batch_xs, batch_ys = mnist.train.next_batch(batch_size)
        # 获取批数据
        sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout})
        if step % display_step == 0:
            # 计算精度
            acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
            # 计算损失值
            loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
            print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc)
        step += 1
    print "Optimization Finished!"
    # 计算测试精度
    print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.})

使用tflearn封装实现

from __future__ import division, print_function, absolute_import
import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.normalization import local_response_normalization
from tflearn.layers.estimator import regression

import tflearn.datasets.oxflower17 as oxflower17
X, Y = oxflower17.load_data(one_hot=True, resize_pics=(227, 227))

# Building 'AlexNet'
network = input_data(shape=[None, 227, 227, 3])
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 17, activation='softmax')
network = regression(network, optimizer='momentum',
                     loss='categorical_crossentropy',
                     learning_rate=0.001)

# Training
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
                    max_checkpoints=1, tensorboard_verbose=2)
model.fit(X, Y, n_epoch=1000, validation_set=0.1, shuffle=True,
          show_metric=True, batch_size=64, snapshot_step=200,
          snapshot_epoch=False, run_id='alexnet_oxflowers17')

GoogLeNet

GoogLeNet是ILSVRC 2014的冠军,文章”Going Deeper with Convolutions”.

使用tflearn封装实现

from __future__ import division, print_function, absolute_import

import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d, avg_pool_2d
from tflearn.layers.normalization import local_response_normalization
from tflearn.layers.merge_ops import merge
from tflearn.layers.estimator import regression

import tflearn.datasets.oxflower17 as oxflower17
X, Y = oxflower17.load_data(one_hot=True, resize_pics=(227, 227))

network = input_data(shape=[None, 227, 227, 3])
conv1_7_7 = conv_2d(network, 64, 7, strides=2, activation='relu', name = 'conv1_7_7_s2')
pool1_3_3 = max_pool_2d(conv1_7_7, 3,strides=2)
pool1_3_3 = local_response_normalization(pool1_3_3)
conv2_3_3_reduce = conv_2d(pool1_3_3, 64,1, activation='relu',name = 'conv2_3_3_reduce')
conv2_3_3 = conv_2d(conv2_3_3_reduce, 192,3, activation='relu', name='conv2_3_3')
conv2_3_3 = local_response_normalization(conv2_3_3)
pool2_3_3 = max_pool_2d(conv2_3_3, kernel_size=3, strides=2, name='pool2_3_3_s2')
inception_3a_1_1 = conv_2d(pool2_3_3, 64, 1, activation='relu', name='inception_3a_1_1')
inception_3a_3_3_reduce = conv_2d(pool2_3_3, 96,1, activation='relu', name='inception_3a_3_3_reduce')
inception_3a_3_3 = conv_2d(inception_3a_3_3_reduce, 128,filter_size=3,  activation='relu', name = 'inception_3a_3_3')
inception_3a_5_5_reduce = conv_2d(pool2_3_3,16, filter_size=1,activation='relu', name ='inception_3a_5_5_reduce' )
inception_3a_5_5 = conv_2d(inception_3a_5_5_reduce, 32, filter_size=5, activation='relu', name= 'inception_3a_5_5')
inception_3a_pool = max_pool_2d(pool2_3_3, kernel_size=3, strides=1, )
inception_3a_pool_1_1 = conv_2d(inception_3a_pool, 32, filter_size=1, activation='relu', name='inception_3a_pool_1_1')

# merge the inception_3a__
inception_3a_output = merge([inception_3a_1_1, inception_3a_3_3, inception_3a_5_5, inception_3a_pool_1_1], mode='concat', axis=3)

inception_3b_1_1 = conv_2d(inception_3a_output, 128,filter_size=1,activation='relu', name= 'inception_3b_1_1' )
inception_3b_3_3_reduce = conv_2d(inception_3a_output, 128, filter_size=1, activation='relu', name='inception_3b_3_3_reduce')
inception_3b_3_3 = conv_2d(inception_3b_3_3_reduce, 192, filter_size=3,  activation='relu',name='inception_3b_3_3')
inception_3b_5_5_reduce = conv_2d(inception_3a_output, 32, filter_size=1, activation='relu', name = 'inception_3b_5_5_reduce')
inception_3b_5_5 = conv_2d(inception_3b_5_5_reduce, 96, filter_size=5,  name = 'inception_3b_5_5')
inception_3b_pool = max_pool_2d(inception_3a_output, kernel_size=3, strides=1,  name='inception_3b_pool')
inception_3b_pool_1_1 = conv_2d(inception_3b_pool, 64, filter_size=1,activation='relu', name='inception_3b_pool_1_1')

#merge the inception_3b_*
inception_3b_output = merge([inception_3b_1_1, inception_3b_3_3, inception_3b_5_5, inception_3b_pool_1_1], mode='concat',axis=3,name='inception_3b_output')

pool3_3_3 = max_pool_2d(inception_3b_output, kernel_size=3, strides=2, name='pool3_3_3')
inception_4a_1_1 = conv_2d(pool3_3_3, 192, filter_size=1, activation='relu', name='inception_4a_1_1')
inception_4a_3_3_reduce = conv_2d(pool3_3_3, 96, filter_size=1, activation='relu', name='inception_4a_3_3_reduce')
inception_4a_3_3 = conv_2d(inception_4a_3_3_reduce, 208, filter_size=3,  activation='relu', name='inception_4a_3_3')
inception_4a_5_5_reduce = conv_2d(pool3_3_3, 16, filter_size=1, activation='relu', name='inception_4a_5_5_reduce')
inception_4a_5_5 = conv_2d(inception_4a_5_5_reduce, 48, filter_size=5,  activation='relu', name='inception_4a_5_5')
inception_4a_pool = max_pool_2d(pool3_3_3, kernel_size=3, strides=1,  name='inception_4a_pool')
inception_4a_pool_1_1 = conv_2d(inception_4a_pool, 64, filter_size=1, activation='relu', name='inception_4a_pool_1_1')

inception_4a_output = merge([inception_4a_1_1, inception_4a_3_3, inception_4a_5_5, inception_4a_pool_1_1], mode='concat', axis=3, name='inception_4a_output')

inception_4b_1_1 = conv_2d(inception_4a_output, 160, filter_size=1, activation='relu', name='inception_4a_1_1')
inception_4b_3_3_reduce = conv_2d(inception_4a_output, 112, filter_size=1, activation='relu', name='inception_4b_3_3_reduce')
inception_4b_3_3 = conv_2d(inception_4b_3_3_reduce, 224, filter_size=3, activation='relu', name='inception_4b_3_3')
inception_4b_5_5_reduce = conv_2d(inception_4a_output, 24, filter_size=1, activation='relu', name='inception_4b_5_5_reduce')
inception_4b_5_5 = conv_2d(inception_4b_5_5_reduce, 64, filter_size=5,  activation='relu', name='inception_4b_5_5')

inception_4b_pool = max_pool_2d(inception_4a_output, kernel_size=3, strides=1,  name='inception_4b_pool')
inception_4b_pool_1_1 = conv_2d(inception_4b_pool, 64, filter_size=1, activation='relu', name='inception_4b_pool_1_1')

inception_4b_output = merge([inception_4b_1_1, inception_4b_3_3, inception_4b_5_5, inception_4b_pool_1_1], mode='concat', axis=3, name='inception_4b_output')

inception_4c_1_1 = conv_2d(inception_4b_output, 128, filter_size=1, activation='relu',name='inception_4c_1_1')
inception_4c_3_3_reduce = conv_2d(inception_4b_output, 128, filter_size=1, activation='relu', name='inception_4c_3_3_reduce')
inception_4c_3_3 = conv_2d(inception_4c_3_3_reduce, 256,  filter_size=3, activation='relu', name='inception_4c_3_3')
inception_4c_5_5_reduce = conv_2d(inception_4b_output, 24, filter_size=1, activation='relu', name='inception_4c_5_5_reduce')
inception_4c_5_5 = conv_2d(inception_4c_5_5_reduce, 64,  filter_size=5, activation='relu', name='inception_4c_5_5')

inception_4c_pool = max_pool_2d(inception_4b_output, kernel_size=3, strides=1)
inception_4c_pool_1_1 = conv_2d(inception_4c_pool, 64, filter_size=1, activation='relu', name='inception_4c_pool_1_1')

inception_4c_output = merge([inception_4c_1_1, inception_4c_3_3, inception_4c_5_5, inception_4c_pool_1_1], mode='concat', axis=3,name='inception_4c_output')

inception_4d_1_1 = conv_2d(inception_4c_output, 112, filter_size=1, activation='relu', name='inception_4d_1_1')
inception_4d_3_3_reduce = conv_2d(inception_4c_output, 144, filter_size=1, activation='relu', name='inception_4d_3_3_reduce')
inception_4d_3_3 = conv_2d(inception_4d_3_3_reduce, 288, filter_size=3, activation='relu', name='inception_4d_3_3')
inception_4d_5_5_reduce = conv_2d(inception_4c_output, 32, filter_size=1, activation='relu', name='inception_4d_5_5_reduce')
inception_4d_5_5 = conv_2d(inception_4d_5_5_reduce, 64, filter_size=5,  activation='relu', name='inception_4d_5_5')
inception_4d_pool = max_pool_2d(inception_4c_output, kernel_size=3, strides=1,  name='inception_4d_pool')
inception_4d_pool_1_1 = conv_2d(inception_4d_pool, 64, filter_size=1, activation='relu', name='inception_4d_pool_1_1')

inception_4d_output = merge([inception_4d_1_1, inception_4d_3_3, inception_4d_5_5, inception_4d_pool_1_1], mode='concat', axis=3, name='inception_4d_output')

inception_4e_1_1 = conv_2d(inception_4d_output, 256, filter_size=1, activation='relu', name='inception_4e_1_1')
inception_4e_3_3_reduce = conv_2d(inception_4d_output, 160, filter_size=1, activation='relu', name='inception_4e_3_3_reduce')
inception_4e_3_3 = conv_2d(inception_4e_3_3_reduce, 320, filter_size=3, activation='relu', name='inception_4e_3_3')
inception_4e_5_5_reduce = conv_2d(inception_4d_output, 32, filter_size=1, activation='relu', name='inception_4e_5_5_reduce')
inception_4e_5_5 = conv_2d(inception_4e_5_5_reduce, 128,  filter_size=5, activation='relu', name='inception_4e_5_5')
inception_4e_pool = max_pool_2d(inception_4d_output, kernel_size=3, strides=1,  name='inception_4e_pool')
inception_4e_pool_1_1 = conv_2d(inception_4e_pool, 128, filter_size=1, activation='relu', name='inception_4e_pool_1_1')

inception_4e_output = merge([inception_4e_1_1, inception_4e_3_3, inception_4e_5_5,inception_4e_pool_1_1],axis=3, mode='concat')

pool4_3_3 = max_pool_2d(inception_4e_output, kernel_size=3, strides=2, name='pool_3_3')

inception_5a_1_1 = conv_2d(pool4_3_3, 256, filter_size=1, activation='relu', name='inception_5a_1_1')
inception_5a_3_3_reduce = conv_2d(pool4_3_3, 160, filter_size=1, activation='relu', name='inception_5a_3_3_reduce')
inception_5a_3_3 = conv_2d(inception_5a_3_3_reduce, 320, filter_size=3, activation='relu', name='inception_5a_3_3')
inception_5a_5_5_reduce = conv_2d(pool4_3_3, 32, filter_size=1, activation='relu', name='inception_5a_5_5_reduce')
inception_5a_5_5 = conv_2d(inception_5a_5_5_reduce, 128, filter_size=5,  activation='relu', name='inception_5a_5_5')
inception_5a_pool = max_pool_2d(pool4_3_3, kernel_size=3, strides=1,  name='inception_5a_pool')
inception_5a_pool_1_1 = conv_2d(inception_5a_pool, 128, filter_size=1,activation='relu', name='inception_5a_pool_1_1')

inception_5a_output = merge([inception_5a_1_1, inception_5a_3_3, inception_5a_5_5, inception_5a_pool_1_1], axis=3,mode='concat')

inception_5b_1_1 = conv_2d(inception_5a_output, 384, filter_size=1,activation='relu', name='inception_5b_1_1')
inception_5b_3_3_reduce = conv_2d(inception_5a_output, 192, filter_size=1, activation='relu', name='inception_5b_3_3_reduce')
inception_5b_3_3 = conv_2d(inception_5b_3_3_reduce, 384,  filter_size=3,activation='relu', name='inception_5b_3_3')
inception_5b_5_5_reduce = conv_2d(inception_5a_output, 48, filter_size=1, activation='relu', name='inception_5b_5_5_reduce')
inception_5b_5_5 = conv_2d(inception_5b_5_5_reduce,128, filter_size=5,  activation='relu', name='inception_5b_5_5' )
inception_5b_pool = max_pool_2d(inception_5a_output, kernel_size=3, strides=1,  name='inception_5b_pool')
inception_5b_pool_1_1 = conv_2d(inception_5b_pool, 128, filter_size=1, activation='relu', name='inception_5b_pool_1_1')
inception_5b_output = merge([inception_5b_1_1, inception_5b_3_3, inception_5b_5_5, inception_5b_pool_1_1], axis=3, mode='concat')

pool5_7_7 = avg_pool_2d(inception_5b_output, kernel_size=7, strides=1)
pool5_7_7 = dropout(pool5_7_7, 0.4)
loss = fully_connected(pool5_7_7, 17,activation='softmax')
network = regression(loss, optimizer='momentum',
                     loss='categorical_crossentropy',
                     learning_rate=0.001)
model = tflearn.DNN(network, checkpoint_path='model_googlenet',
                    max_checkpoints=1, tensorboard_verbose=2)
model.fit(X, Y, n_epoch=1000, validation_set=0.1, shuffle=True,
          show_metric=True, batch_size=64, snapshot_step=200,
          snapshot_epoch=False, run_id='googlenet_oxflowers17')

VGGnet

VGGnet是Oxford的Visual Geometry Group的team,ILSVRC 2014上第二名

使用tflearn封装实现

#VGG-16
import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.estimator import regression
# Data loading and preprocessing
import tflearn.datasets.oxflower17 as oxflower17
X, Y = oxflower17.load_data(one_hot=True)
# Building 'VGG Network'
network = input_data(shape=[None, 227, 227, 3])

network = conv_2d(network, 64, 3, activation='relu')
network = conv_2d(network, 64, 3, activation='relu')
network = max_pool_2d(network, 2, strides=2)

network = conv_2d(network, 128, 3, activation='relu')
network = conv_2d(network, 128, 3, activation='relu')
network = max_pool_2d(network, 2, strides=2)

network = conv_2d(network, 256, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 2, strides=2)

network = conv_2d(network, 512, 3, activation='relu')
network = conv_2d(network, 512, 3, activation='relu')
network = conv_2d(network, 512, 3, activation='relu')
network = max_pool_2d(network, 2, strides=2)

network = conv_2d(network, 512, 3, activation='relu')
network = conv_2d(network, 512, 3, activation='relu')
network = conv_2d(network, 512, 3, activation='relu')
network = max_pool_2d(network, 2, strides=2)

network = fully_connected(network, 4096, activation='relu')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='relu')
network = dropout(network, 0.5)
network = fully_connected(network, 17, activation='softmax')

network = regression(network, optimizer='rmsprop',
                     loss='categorical_crossentropy',
                     learning_rate=0.001)

# Training
model = tflearn.DNN(network, checkpoint_path='model_vgg',
                    max_checkpoints=1, tensorboard_verbose=0)
model.fit(X, Y, n_epoch=500, shuffle=True,
          show_metric=True, batch_size=32, snapshot_step=500,
          snapshot_epoch=False, run_id='vgg_oxflowers17')

Deep Residual Network

“Deep Residual Learning for Image Recognition”是ILSVRC 2015的冠军,现在最强大的网络模型.

使用tflearn封装实现

from __future__ import division, print_function, absolute_import

import tflearn

# Residual blocks
# 32 layers: n=5, 56 layers: n=9, 110 layers: n=18
n = 5

# Data loading
from tflearn.datasets import cifar10
(X, Y), (testX, testY) = cifar10.load_data()
Y = tflearn.data_utils.to_categorical(Y, 10)
testY = tflearn.data_utils.to_categorical(testY, 10)

# Real-time data preprocessing
img_prep = tflearn.ImagePreprocessing()
img_prep.add_featurewise_zero_center(per_channel=True)

# Real-time data augmentation
img_aug = tflearn.ImageAugmentation()
img_aug.add_random_flip_leftright()
img_aug.add_random_crop([32, 32], padding=4)

# Building Residual Network
net = tflearn.input_data(shape=[None, 32, 32, 3],
                         data_preprocessing=img_prep,
                         data_augmentation=img_aug)
net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001)
net = tflearn.residual_block(net, n, 16)
net = tflearn.residual_block(net, 1, 32, downsample=True)
net = tflearn.residual_block(net, n-1, 32)
net = tflearn.residual_block(net, 1, 64, downsample=True)
net = tflearn.residual_block(net, n-1, 64)
net = tflearn.batch_normalization(net)
net = tflearn.activation(net, 'relu')
net = tflearn.global_avg_pool(net)
# Regression
net = tflearn.fully_connected(net, 10, activation='softmax')
mom = tflearn.Momentum(0.1, lr_decay=0.1, decay_step=32000, staircase=True)
net = tflearn.regression(net, optimizer=mom,
                         loss='categorical_crossentropy')
# Training
model = tflearn.DNN(net, checkpoint_path='model_resnet_cifar10',
                    max_checkpoints=10, tensorboard_verbose=0,
                    clip_gradients=0.)
model.fit(X, Y, n_epoch=200, validation_set=(testX, testY),
          snapshot_epoch=False, snapshot_step=500,
          show_metric=True, batch_size=128, shuffle=True,
          run_id='resnet_cifar10')

看我写的辛苦求打赏啊!!!有学术讨论和指点请加微信manutdzou,注明

20


blog comments powered by Disqus