windows编译tensorflow tensorflow单机多卡程序的框架 tensorflow的操作 tensorflow的变量初始化和scope 人体姿态检测 segmentation标注工具 tensorflow模型恢复与inference的模型简化 利用多线程读取数据加快网络训练 tensorflow使用LSTM pytorch examples 利用tensorboard调参 深度学习中的loss函数汇总 纯C++代码实现的faster rcnn tensorflow使用记录 windows下配置caffe_ssd use ubuntu caffe as libs use windows caffe like opencv windows caffe implement caffe model convert to keras model flappyBird DQN Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks Fast-style-transfer tensorflow安装 tensorflow DQN Fully Convolutional Models for Semantic Segmentation Transposed Convolution, Fractionally Strided Convolution or Deconvolution 基于tensorflow的分布式部署 用python实现mlp bp算法 用tensorflow和tflearn搭建经典网络结构 Data Augmentation Tensorflow examples Training Faster RCNN with Online Hard Example Mining 使用Tensorflow做Prisma图像风格迁移 RNN(循环神经网络)推导 深度学习中的稀疏编码思想 利用caffe与lmdb读写图像数据 分析voc2007检测数据 用python写caffe网络配置 ssd开发 将KITTI的数据格式转换为VOC Pascal的xml格式 Faster RCNN 源码分析 在Caffe中建立Python layer 在Caffe中建立C++ layer 为什么CNN反向传播计算梯度时需要将权重旋转180度 Caffe使用教程(下) Caffe使用教程(上) CNN反向传播 Softmax回归 Caffe Ubuntu下环境配置

Training Faster RCNN with Online Hard Example Mining

2016年10月18日

Training Faster RCNN with Online Hard Example Mining

OHEM的论文描述在https://arxiv.org/abs/1604.03540,主要思想是首先将所有ROI区域输入fast rcnn模块求得每个ROI的loss,对所有ROI的loss从大到小排序,选择前N个最大的loss的ROI样本进行训练网络更新fast rcnn的参数.故而叫做在线困难样本挖掘,因为只有每次迭代过程中才能确定哪些ROI区域作为训练样本,而训练过程主要选择loss最大的那些ROI.算法比较简单.作者主要实现了fast rcnn的OHEM,本文主要参考fast rcnn的OHEM实现faster rcnn的OHEM.

model

RPN的model保持不变,主要修改fast rcnn部分的model,如下

stage1_fast_rcnn_ohem_train.pt

name: "VGG_ILSVRC_16_layers"
layer {
  name: 'data'
  type: 'Python'
  top: 'data'
  top: 'rois'
  top: 'labels'
  top: 'bbox_targets'
  top: 'bbox_inside_weights'
  top: 'bbox_outside_weights'
  python_param {
    module: 'roi_data_layer.layer'
    layer: 'RoIDataLayer'
    param_str: "'num_classes': 21"
  }
}
layer {
  name: "conv1_1"
  type: "Convolution"
  bottom: "data"
  top: "conv1_1"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu1_1"
  type: "ReLU"
  bottom: "conv1_1"
  top: "conv1_1"
}
layer {
  name: "conv1_2"
  type: "Convolution"
  bottom: "conv1_1"
  top: "conv1_2"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu1_2"
  type: "ReLU"
  bottom: "conv1_2"
  top: "conv1_2"
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1_2"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv2_1"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2_1"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu2_1"
  type: "ReLU"
  bottom: "conv2_1"
  top: "conv2_1"
}
layer {
  name: "conv2_2"
  type: "Convolution"
  bottom: "conv2_1"
  top: "conv2_2"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu2_2"
  type: "ReLU"
  bottom: "conv2_2"
  top: "conv2_2"
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2_2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv3_1"
  type: "Convolution"
  bottom: "pool2"
  top: "conv3_1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu3_1"
  type: "ReLU"
  bottom: "conv3_1"
  top: "conv3_1"
}
layer {
  name: "conv3_2"
  type: "Convolution"
  bottom: "conv3_1"
  top: "conv3_2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu3_2"
  type: "ReLU"
  bottom: "conv3_2"
  top: "conv3_2"
}
layer {
  name: "conv3_3"
  type: "Convolution"
  bottom: "conv3_2"
  top: "conv3_3"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu3_3"
  type: "ReLU"
  bottom: "conv3_3"
  top: "conv3_3"
}
layer {
  name: "pool3"
  type: "Pooling"
  bottom: "conv3_3"
  top: "pool3"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv4_1"
  type: "Convolution"
  bottom: "pool3"
  top: "conv4_1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu4_1"
  type: "ReLU"
  bottom: "conv4_1"
  top: "conv4_1"
}
layer {
  name: "conv4_2"
  type: "Convolution"
  bottom: "conv4_1"
  top: "conv4_2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu4_2"
  type: "ReLU"
  bottom: "conv4_2"
  top: "conv4_2"
}
layer {
  name: "conv4_3"
  type: "Convolution"
  bottom: "conv4_2"
  top: "conv4_3"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu4_3"
  type: "ReLU"
  bottom: "conv4_3"
  top: "conv4_3"
}
layer {
  name: "pool4"
  type: "Pooling"
  bottom: "conv4_3"
  top: "pool4"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv5_1"
  type: "Convolution"
  bottom: "pool4"
  top: "conv5_1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu5_1"
  type: "ReLU"
  bottom: "conv5_1"
  top: "conv5_1"
}
layer {
  name: "conv5_2"
  type: "Convolution"
  bottom: "conv5_1"
  top: "conv5_2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu5_2"
  type: "ReLU"
  bottom: "conv5_2"
  top: "conv5_2"
}
layer {
  name: "conv5_3"
  type: "Convolution"
  bottom: "conv5_2"
  top: "conv5_3"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu5_3"
  type: "ReLU"
  bottom: "conv5_3"
  top: "conv5_3"
}

##########################
## Readonly RoI Network ##
######### Start ##########
layer {
  name: "roi_pool5_readonly"
  type: "ROIPooling"
  bottom: "conv5_3"
  bottom: "rois"
  top: "pool5_readonly"
  propagate_down: false
  propagate_down: false
  roi_pooling_param {
    pooled_w: 7
    pooled_h: 7
    spatial_scale: 0.0625 # 1/16
  }
}
layer {
  name: "fc6_readonly"
  type: "InnerProduct"
  bottom: "pool5_readonly"
  top: "fc6_readonly"
  propagate_down: false
  param {
    name: "fc6_w"
  }
  param {
    name: "fc6_b"
  }
  inner_product_param {
    num_output: 4096
  }
}
layer {
  name: "relu6_readonly"
  type: "ReLU"
  bottom: "fc6_readonly"
  top: "fc6_readonly"
  propagate_down: false
}
layer {
  name: "drop6_readonly"
  type: "Dropout"
  bottom: "fc6_readonly"
  top: "fc6_readonly"
  propagate_down: false
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "fc7_readonly"
  type: "InnerProduct"
  bottom: "fc6_readonly"
  top: "fc7_readonly"
  propagate_down: false
  param {
    name: "fc7_w"
  }
  param {
    name: "fc7_b"
  }
  inner_product_param {
    num_output: 4096
  }
}
layer {
  name: "relu7_readonly"
  type: "ReLU"
  bottom: "fc7_readonly"
  top: "fc7_readonly"
  propagate_down: false
}
layer {
  name: "drop7_readonly"
  type: "Dropout"
  bottom: "fc7_readonly"
  top: "fc7_readonly"
  propagate_down: false
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "cls_score_readonly"
  type: "InnerProduct"
  bottom: "fc7_readonly"
  top: "cls_score_readonly"
  propagate_down: false
  param {
    name: "cls_score_w"
  }
  param {
    name: "cls_score_b"
  }
  inner_product_param {
    num_output: 21
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "bbox_pred_readonly"
  type: "InnerProduct"
  bottom: "fc7_readonly"
  top: "bbox_pred_readonly"
  propagate_down: false
  param {
    name: "bbox_pred_w"
  }
  param {
    name: "bbox_pred_b"
  }
  inner_product_param {
    num_output: 84
    weight_filler {
      type: "gaussian"
      std: 0.001
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "cls_prob_readonly"
  type: "Softmax"
  bottom: "cls_score_readonly"
  top: "cls_prob_readonly"
  propagate_down: false
}
layer {
  name: "hard_roi_mining"
  type: "Python"
  bottom: "cls_prob_readonly"
  bottom: "bbox_pred_readonly"
  bottom: "rois"
  bottom: "labels"
  bottom: "bbox_targets"
  bottom: "bbox_inside_weights"
  bottom: "bbox_outside_weights"
  top: "rois_hard"
  top: "labels_hard"
  top: "bbox_targets_hard"
  top: "bbox_inside_weights_hard"
  top: "bbox_outside_weights_hard"
  propagate_down: false
  propagate_down: false
  propagate_down: false
  propagate_down: false
  propagate_down: false
  propagate_down: false
  propagate_down: false
  python_param {
    module: "roi_data_layer.layer"
    layer: "OHEMDataLayer"
    param_str: "'num_classes': 21"
  }
}
########## End ###########
## Readonly RoI Network ##
##########################

layer {
  name: "roi_pool5"
  type: "ROIPooling"
  bottom: "conv5_3"
  bottom: "rois_hard"
  top: "pool5"
  propagate_down: true
  propagate_down: false
  roi_pooling_param {
    pooled_w: 7
    pooled_h: 7
    spatial_scale: 0.0625 # 1/16
  }
}
layer {
  name: "fc6"
  type: "InnerProduct"
  bottom: "pool5"
  top: "fc6"
  param {
    name: "fc6_w"
    lr_mult: 1
  }
  param {
    name: "fc6_b"
    lr_mult: 2
  }
  inner_product_param {
    num_output: 4096
  }
}
layer {
  name: "relu6"
  type: "ReLU"
  bottom: "fc6"
  top: "fc6"
}
layer {
  name: "drop6"
  type: "Dropout"
  bottom: "fc6"
  top: "fc6"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "fc7"
  type: "InnerProduct"
  bottom: "fc6"
  top: "fc7"
  param {
    name: "fc7_w"
    lr_mult: 1
  }
  param {
    name: "fc7_b"
    lr_mult: 2
  }
  inner_product_param {
    num_output: 4096
  }
}
layer {
  name: "relu7"
  type: "ReLU"
  bottom: "fc7"
  top: "fc7"
}
layer {
  name: "drop7"
  type: "Dropout"
  bottom: "fc7"
  top: "fc7"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "cls_score"
  type: "InnerProduct"
  bottom: "fc7"
  top: "cls_score"
  param {
    name: "cls_score_w"
    lr_mult: 1
  }
  param {
    name: "cls_score_b"
    lr_mult: 2
  }
  inner_product_param {
    num_output: 21
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "bbox_pred"
  type: "InnerProduct"
  bottom: "fc7"
  top: "bbox_pred"
  param {
    name: "bbox_pred_w"
    lr_mult: 1
  }
  param {
    name: "bbox_pred_b"
    lr_mult: 2
  }
  inner_product_param {
    num_output: 84
    weight_filler {
      type: "gaussian"
      std: 0.001
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "loss_cls"
  type: "SoftmaxWithLoss"
  bottom: "cls_score"
  bottom: "labels_hard"
  top: "loss_cls"
  propagate_down: true
  propagate_down: false
  loss_weight: 1
}
layer {
  name: "loss_bbox"
  type: "SmoothL1Loss"
  bottom: "bbox_pred"
  bottom: "bbox_targets_hard"
  bottom: "bbox_inside_weights_hard"
  bottom: "bbox_outside_weights_hard"
  top: "loss_bbox"
  propagate_down: true
  propagate_down: false
  propagate_down: false
  propagate_down: false
  loss_weight: 1
}

#========= RPN ============
# Dummy layers so that initial parameters are saved into the output net

layer {
  name: "rpn_conv/3x3"
  type: "Convolution"
  bottom: "conv5_3"
  top: "rpn/output"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 512
    kernel_size: 3 pad: 1 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
  }
}
layer {
  name: "rpn_relu/3x3"
  type: "ReLU"
  bottom: "rpn/output"
  top: "rpn/output"
}

layer {
  name: "rpn_cls_score"
  type: "Convolution"
  bottom: "rpn/output"
  top: "rpn_cls_score"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 18   # 2(bg/fg) * 9(anchors)
    kernel_size: 1 pad: 0 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
  }
}
layer {
  name: "rpn_bbox_pred"
  type: "Convolution"
  bottom: "rpn/output"
  top: "rpn_bbox_pred"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 36   # 4 * 9(anchors)
    kernel_size: 1 pad: 0 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
  }
}
layer {
  name: "silence_rpn_cls_score"
  type: "Silence"
  bottom: "rpn_cls_score"
}
layer {
  name: "silence_rpn_bbox_pred"
  type: "Silence"
  bottom: "rpn_bbox_pred"
}

stage2_fast_rcnn_ohem_train.pt

name: "VGG_ILSVRC_16_layers"
layer {
  name: 'data'
  type: 'Python'
  top: 'data'
  top: 'rois'
  top: 'labels'
  top: 'bbox_targets'
  top: 'bbox_inside_weights'
  top: 'bbox_outside_weights'
  python_param {
    module: 'roi_data_layer.layer'
    layer: 'RoIDataLayer'
    param_str: "'num_classes': 21"
  }
}
layer {
  name: "conv1_1"
  type: "Convolution"
  bottom: "data"
  top: "conv1_1"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu1_1"
  type: "ReLU"
  bottom: "conv1_1"
  top: "conv1_1"
}
layer {
  name: "conv1_2"
  type: "Convolution"
  bottom: "conv1_1"
  top: "conv1_2"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu1_2"
  type: "ReLU"
  bottom: "conv1_2"
  top: "conv1_2"
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1_2"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv2_1"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2_1"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu2_1"
  type: "ReLU"
  bottom: "conv2_1"
  top: "conv2_1"
}
layer {
  name: "conv2_2"
  type: "Convolution"
  bottom: "conv2_1"
  top: "conv2_2"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu2_2"
  type: "ReLU"
  bottom: "conv2_2"
  top: "conv2_2"
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2_2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv3_1"
  type: "Convolution"
  bottom: "pool2"
  top: "conv3_1"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu3_1"
  type: "ReLU"
  bottom: "conv3_1"
  top: "conv3_1"
}
layer {
  name: "conv3_2"
  type: "Convolution"
  bottom: "conv3_1"
  top: "conv3_2"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu3_2"
  type: "ReLU"
  bottom: "conv3_2"
  top: "conv3_2"
}
layer {
  name: "conv3_3"
  type: "Convolution"
  bottom: "conv3_2"
  top: "conv3_3"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu3_3"
  type: "ReLU"
  bottom: "conv3_3"
  top: "conv3_3"
}
layer {
  name: "pool3"
  type: "Pooling"
  bottom: "conv3_3"
  top: "pool3"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv4_1"
  type: "Convolution"
  bottom: "pool3"
  top: "conv4_1"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu4_1"
  type: "ReLU"
  bottom: "conv4_1"
  top: "conv4_1"
}
layer {
  name: "conv4_2"
  type: "Convolution"
  bottom: "conv4_1"
  top: "conv4_2"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu4_2"
  type: "ReLU"
  bottom: "conv4_2"
  top: "conv4_2"
}
layer {
  name: "conv4_3"
  type: "Convolution"
  bottom: "conv4_2"
  top: "conv4_3"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu4_3"
  type: "ReLU"
  bottom: "conv4_3"
  top: "conv4_3"
}
layer {
  name: "pool4"
  type: "Pooling"
  bottom: "conv4_3"
  top: "pool4"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv5_1"
  type: "Convolution"
  bottom: "pool4"
  top: "conv5_1"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu5_1"
  type: "ReLU"
  bottom: "conv5_1"
  top: "conv5_1"
}
layer {
  name: "conv5_2"
  type: "Convolution"
  bottom: "conv5_1"
  top: "conv5_2"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu5_2"
  type: "ReLU"
  bottom: "conv5_2"
  top: "conv5_2"
}
layer {
  name: "conv5_3"
  type: "Convolution"
  bottom: "conv5_2"
  top: "conv5_3"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu5_3"
  type: "ReLU"
  bottom: "conv5_3"
  top: "conv5_3"
}
##########################
## Readonly RoI Network ##
######### Start ##########
layer {
  name: "roi_pool5_readonly"
  type: "ROIPooling"
  bottom: "conv5_3"
  bottom: "rois"
  top: "pool5_readonly"
  propagate_down: false
  propagate_down: false
  roi_pooling_param {
    pooled_w: 7
    pooled_h: 7
    spatial_scale: 0.0625 # 1/16
  }
}
layer {
  name: "fc6_readonly"
  type: "InnerProduct"
  bottom: "pool5_readonly"
  top: "fc6_readonly"
  propagate_down: false
  param {
    name: "fc6_w"
  }
  param {
    name: "fc6_b"
  }
  inner_product_param {
    num_output: 4096
  }
}
layer {
  name: "relu6_readonly"
  type: "ReLU"
  bottom: "fc6_readonly"
  top: "fc6_readonly"
  propagate_down: false
}
layer {
  name: "drop6_readonly"
  type: "Dropout"
  bottom: "fc6_readonly"
  top: "fc6_readonly"
  propagate_down: false
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "fc7_readonly"
  type: "InnerProduct"
  bottom: "fc6_readonly"
  top: "fc7_readonly"
  propagate_down: false
  param {
    name: "fc7_w"
  }
  param {
    name: "fc7_b"
  }
  inner_product_param {
    num_output: 4096
  }
}
layer {
  name: "relu7_readonly"
  type: "ReLU"
  bottom: "fc7_readonly"
  top: "fc7_readonly"
  propagate_down: false
}
layer {
  name: "drop7_readonly"
  type: "Dropout"
  bottom: "fc7_readonly"
  top: "fc7_readonly"
  propagate_down: false
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "cls_score_readonly"
  type: "InnerProduct"
  bottom: "fc7_readonly"
  top: "cls_score_readonly"
  propagate_down: false
  param {
    name: "cls_score_w"
  }
  param {
    name: "cls_score_b"
  }
  inner_product_param {
    num_output: 21
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "bbox_pred_readonly"
  type: "InnerProduct"
  bottom: "fc7_readonly"
  top: "bbox_pred_readonly"
  propagate_down: false
  param {
    name: "bbox_pred_w"
  }
  param {
    name: "bbox_pred_b"
  }
  inner_product_param {
    num_output: 84
    weight_filler {
      type: "gaussian"
      std: 0.001
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "cls_prob_readonly"
  type: "Softmax"
  bottom: "cls_score_readonly"
  top: "cls_prob_readonly"
  propagate_down: false
}
layer {
  name: "hard_roi_mining"
  type: "Python"
  bottom: "cls_prob_readonly"
  bottom: "bbox_pred_readonly"
  bottom: "rois"
  bottom: "labels"
  bottom: "bbox_targets"
  bottom: "bbox_inside_weights"
  bottom: "bbox_outside_weights"
  top: "rois_hard"
  top: "labels_hard"
  top: "bbox_targets_hard"
  top: "bbox_inside_weights_hard"
  top: "bbox_outside_weights_hard"
  propagate_down: false
  propagate_down: false
  propagate_down: false
  propagate_down: false
  propagate_down: false
  propagate_down: false
  propagate_down: false
  python_param {
    module: "roi_data_layer.layer"
    layer: "OHEMDataLayer"
    param_str: "'num_classes': 21"
  }
}
########## End ###########
## Readonly RoI Network ##
##########################

layer {
  name: "roi_pool5"
  type: "ROIPooling"
  bottom: "conv5_3"
  bottom: "rois_hard"
  top: "pool5"
  propagate_down: true
  propagate_down: false
  roi_pooling_param {
    pooled_w: 7
    pooled_h: 7
    spatial_scale: 0.0625 # 1/16
  }
}
layer {
  name: "fc6"
  type: "InnerProduct"
  bottom: "pool5"
  top: "fc6"
  param { name: "fc6_w" lr_mult: 1 }
  param { name: "fc6_b" lr_mult: 2 }
  inner_product_param {
    num_output: 4096
  }
}
layer {
  name: "relu6"
  type: "ReLU"
  bottom: "fc6"
  top: "fc6"
}
layer {
  name: "drop6"
  type: "Dropout"
  bottom: "fc6"
  top: "fc6"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "fc7"
  type: "InnerProduct"
  bottom: "fc6"
  top: "fc7"
  param { name: "fc7_w" lr_mult: 1 }
  param { name: "fc7_b" lr_mult: 2 }
  inner_product_param {
    num_output: 4096
  }
}
layer {
  name: "relu7"
  type: "ReLU"
  bottom: "fc7"
  top: "fc7"
}
layer {
  name: "drop7"
  type: "Dropout"
  bottom: "fc7"
  top: "fc7"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "cls_score"
  type: "InnerProduct"
  bottom: "fc7"
  top: "cls_score"
  param { name: "cls_score_w" lr_mult: 1 }
  param { name: "cls_score_b" lr_mult: 2 }
  inner_product_param {
    num_output: 21
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "bbox_pred"
  type: "InnerProduct"
  bottom: "fc7"
  top: "bbox_pred"
  param { name: "bbox_pred_w" lr_mult: 1 }
  param { name: "bbox_pred_b" lr_mult: 2 }
  inner_product_param {
    num_output: 84
    weight_filler {
      type: "gaussian"
      std: 0.001
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "loss_cls"
  type: "SoftmaxWithLoss"
  bottom: "cls_score"
  bottom: "labels_hard"
  top: "loss_cls"
  propagate_down: true
  propagate_down: false
  loss_weight: 1
}
layer {
  name: "loss_bbox"
  type: "SmoothL1Loss"
  bottom: "bbox_pred"
  bottom: "bbox_targets_hard"
  bottom: "bbox_inside_weights_hard"
  bottom: "bbox_outside_weights_hard"
  top: "loss_bbox"
  propagate_down: true
  propagate_down: false
  propagate_down: false
  propagate_down: false
  loss_weight: 1
}

#========= RPN ============
# Dummy layers so that initial parameters are saved into the output net

layer {
  name: "rpn_conv/3x3"
  type: "Convolution"
  bottom: "conv5_3"
  top: "rpn/output"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 512
    kernel_size: 3 pad: 1 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
  }
}
layer {
  name: "rpn_relu/3x3"
  type: "ReLU"
  bottom: "rpn/output"
  top: "rpn/output"
}

layer {
  name: "rpn_cls_score"
  type: "Convolution"
  bottom: "rpn/output"
  top: "rpn_cls_score"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 18   # 2(bg/fg) * 9(anchors)
    kernel_size: 1 pad: 0 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
  }
}
layer {
  name: "rpn_bbox_pred"
  type: "Convolution"
  bottom: "rpn/output"
  top: "rpn_bbox_pred"
  param { lr_mult: 0 decay_mult: 0 }
  param { lr_mult: 0 decay_mult: 0 }
  convolution_param {
    num_output: 36   # 4 * 9(anchors)
    kernel_size: 1 pad: 0 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
  }
}
layer {
  name: "silence_rpn_cls_score"
  type: "Silence"
  bottom: "rpn_cls_score"
}
layer {
  name: "silence_rpn_bbox_pred"
  type: "Silence"
  bottom: "rpn_bbox_pred"
}

如上所示,两个过程主要增加了一个read only的模块用于计算RPN输出全部roi的loss,增加一个OHEMDataLayer层用于选择最大loss的roi参与fast rcnn的训练.注意,OHEM时所有的层不更新参数所以所有readony部分layer的bottom都需要关闭反向梯度传播”propagate_down:false”,这里顺便提一下,原版的faster rcnn不需要反传的bottom没有设置propagate_down:false也没有出错,这是因为caffe有一个智能分析哪些bottom需要反传梯度的识别机制,当这种机制失效时候就需要人工设置propagate_down:false.同时通过设置相同的类似param { name: “fc6_w” }来共享层参数.

minibatch.py中需要添加

def get_allrois_minibatch(roidb, num_classes):
    """Given a roidb, construct a minibatch sampled from it."""
    num_images = len(roidb)
    # Sample random scales to use for each image in this batch
    random_scale_inds = npr.randint(0, high=len(cfg.TRAIN.SCALES),
                                    size=num_images)
    assert(cfg.TRAIN.BATCH_SIZE % num_images == 0), \
        'num_images ({}) must divide BATCH_SIZE ({})'. \
        format(num_images, cfg.TRAIN.BATCH_SIZE)

    # Get the input image blob, formatted for caffe
    im_blob, im_scales = _get_image_blob(roidb, random_scale_inds)

    blobs = {'data': im_blob}

    if cfg.TRAIN.HAS_RPN:
        # Doesn't support RPN yet.
        assert False
        assert len(im_scales) == 1, "Single batch only"
        assert len(roidb) == 1, "Single batch only"
        # gt boxes: (x1, y1, x2, y2, cls)
        gt_inds = np.where(roidb[0]['gt_classes'] != 0)[0]
        gt_boxes = np.empty((len(gt_inds), 5), dtype=np.float32)
        gt_boxes[:, 0:4] = roidb[0]['boxes'][gt_inds, :] * im_scales[0]
        gt_boxes[:, 4] = roidb[0]['gt_classes'][gt_inds]
        blobs['gt_boxes'] = gt_boxes
        blobs['im_info'] = np.array(
            [[im_blob.shape[2], im_blob.shape[3], im_scales[0]]],
            dtype=np.float32)
    else: # not using RPN
        # Now, build the region of interest and label blobs
        rois_blob = np.zeros((0, 5), dtype=np.float32)
        labels_blob = np.zeros((0), dtype=np.float32)
        bbox_targets_blob = np.zeros((0, 4 * num_classes), dtype=np.float32)
        bbox_inside_blob = np.zeros(bbox_targets_blob.shape, dtype=np.float32)

        for im_i in xrange(num_images):
            labels, overlaps, im_rois, bbox_targets, bbox_inside_weights \
                = _all_rois(roidb[im_i], num_classes)

            # Add to RoIs blob
            rois = _project_im_rois(im_rois, im_scales[im_i])
            batch_ind = im_i * np.ones((rois.shape[0], 1))
            rois_blob_this_image = np.hstack((batch_ind, rois))
            rois_blob = np.vstack((rois_blob, rois_blob_this_image))

            # Add to labels, bbox targets, and bbox loss blobs
            labels_blob = np.hstack((labels_blob, labels))
            bbox_targets_blob = np.vstack((bbox_targets_blob, bbox_targets))
            bbox_inside_blob = np.vstack((bbox_inside_blob, bbox_inside_weights))

        blobs['rois'] = rois_blob
        blobs['labels'] = labels_blob

        if cfg.TRAIN.BBOX_REG:
            blobs['bbox_targets'] = bbox_targets_blob
            blobs['bbox_inside_weights'] = bbox_inside_blob
            blobs['bbox_outside_weights'] = \
                np.array(bbox_inside_blob > 0).astype(np.float32)

    return blobs


def get_ohem_minibatch(loss, rois, labels, bbox_targets=None,
                       bbox_inside_weights=None, bbox_outside_weights=None):
    """Given rois and their loss, construct a minibatch using OHEM."""
    loss = np.array(loss)

    if cfg.TRAIN.OHEM_USE_NMS:
        # Do NMS using loss for de-dup and diversity
        keep_inds = []
        nms_thresh = cfg.TRAIN.OHEM_NMS_THRESH
        source_img_ids = [roi[0] for roi in rois]
        for img_id in np.unique(source_img_ids):
            for label in np.unique(labels):
                sel_indx = np.where(np.logical_and(labels == label, \
                                    source_img_ids == img_id))[0]
                if not len(sel_indx):
                    continue
                boxes = np.concatenate((rois[sel_indx, 1:],
                        loss[sel_indx][:,np.newaxis]), axis=1).astype(np.float32)
                keep_inds.extend(sel_indx[nms(boxes, nms_thresh)])

        hard_keep_inds = select_hard_examples(loss[keep_inds])
        hard_inds = np.array(keep_inds)[hard_keep_inds]
    else:
        hard_inds = select_hard_examples(loss)

    blobs = {'rois_hard': rois[hard_inds, :].copy(),
             'labels_hard': labels[hard_inds].copy()}
    if bbox_targets is not None:
        assert cfg.TRAIN.BBOX_REG
        blobs['bbox_targets_hard'] = bbox_targets[hard_inds, :].copy()
        blobs['bbox_inside_weights_hard'] = bbox_inside_weights[hard_inds, :].copy()
        blobs['bbox_outside_weights_hard'] = bbox_outside_weights[hard_inds, :].copy()

    return blobs

def select_hard_examples(loss):
    """Select hard rois."""
    # Sort and select top hard examples.
    sorted_indices = np.argsort(loss)[::-1]
    hard_keep_inds = sorted_indices[0:np.minimum(len(loss), cfg.TRAIN.BATCH_SIZE)]
    # (explore more ways of selecting examples in this function; e.g., sampling)

    return hard_keep_inds

minibatch.py中修改

def _sample_rois(roidb, fg_rois_per_image, rois_per_image, num_classes):
    """Generate a random sample of RoIs comprising foreground and background
    examples.
    """
    # label = class RoI has max overlap with
    labels = roidb['max_classes']
    overlaps = roidb['max_overlaps']
    rois = roidb['boxes']

    # Select foreground RoIs as those with >= FG_THRESH overlap
    fg_inds = np.where(overlaps >= cfg.TRAIN.FG_THRESH)[0]
    # Guard against the case when an image has fewer than fg_rois_per_image
    # foreground RoIs
    fg_rois_per_this_image = np.minimum(fg_rois_per_image, fg_inds.size)
    # Sample foreground regions without replacement
    if fg_inds.size > 0:
        fg_inds = npr.choice(
                fg_inds, size=fg_rois_per_this_image, replace=False)

    # Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI)
    bg_inds = np.where((overlaps < cfg.TRAIN.BG_THRESH_HI) &
                       (overlaps >= cfg.TRAIN.BG_THRESH_LO))[0]
    # Compute number of background RoIs to take from this image (guarding
    # against there being fewer than desired)
    bg_rois_per_this_image = rois_per_image - fg_rois_per_this_image
    bg_rois_per_this_image = np.minimum(bg_rois_per_this_image,
                                        bg_inds.size)
    # Sample foreground regions without replacement
    if bg_inds.size > 0:
        bg_inds = npr.choice(
                bg_inds, size=bg_rois_per_this_image, replace=False)

    # The indices that we're selecting (both fg and bg)
    keep_inds = np.append(fg_inds, bg_inds)
    # Select sampled values from various arrays:
    labels = labels[keep_inds]
    # Clamp labels for the background RoIs to 0
    labels[fg_rois_per_this_image:] = 0
    overlaps = overlaps[keep_inds]
    rois = rois[keep_inds]

    bbox_targets, bbox_inside_weights = _get_bbox_regression_labels(
            roidb['bbox_targets'][keep_inds, :], num_classes)

    return labels, overlaps, rois, bbox_targets, bbox_inside_weights

layer.py中添加一个OHEM层

class OHEMDataLayer(caffe.Layer):
    """Online Hard-example Mining Layer."""
    def setup(self, bottom, top):
        """Setup the OHEMDataLayer."""

        # parse the layer parameter string, which must be valid YAML
        layer_params = yaml.load(self.param_str_)

        self._num_classes = layer_params['num_classes']

        self._name_to_bottom_map = {
            'cls_prob_readonly': 0,
            'bbox_pred_readonly': 1,
            'rois': 2,
            'labels': 3}

        if cfg.TRAIN.BBOX_REG:
            self._name_to_bottom_map['bbox_targets'] = 4
            self._name_to_bottom_map['bbox_loss_weights'] = 5

        self._name_to_top_map = {}

        assert cfg.TRAIN.HAS_RPN == False
        # data blob: holds a batch of N images, each with 3 channels
        idx = 0
        # rois blob: holds R regions of interest, each is a 5-tuple
        # (n, x1, y1, x2, y2) specifying an image batch index n and a
        # rectangle (x1, y1, x2, y2)
        top[idx].reshape(1, 5)
        self._name_to_top_map['rois_hard'] = idx
        idx += 1

        # labels blob: R categorical labels in [0, ..., K] for K foreground
        # classes plus background
        top[idx].reshape(1)
        self._name_to_top_map['labels_hard'] = idx
        idx += 1

        if cfg.TRAIN.BBOX_REG:
            # bbox_targets blob: R bounding-box regression targets with 4
            # targets per class
            top[idx].reshape(1, self._num_classes * 4)
            self._name_to_top_map['bbox_targets_hard'] = idx
            idx += 1

            # bbox_inside_weights blob: At most 4 targets per roi are active;
            # thisbinary vector sepcifies the subset of active targets
            top[idx].reshape(1, self._num_classes * 4)
            self._name_to_top_map['bbox_inside_weights_hard'] = idx
            idx += 1

            top[idx].reshape(1, self._num_classes * 4)
            self._name_to_top_map['bbox_outside_weights_hard'] = idx
            idx += 1

        print 'OHEMDataLayer: name_to_top:', self._name_to_top_map
        assert len(top) == len(self._name_to_top_map)

    def forward(self, bottom, top):
        """Compute loss, select RoIs using OHEM. Use RoIs to get blobs and copy them into this layer's top blob vector."""

        cls_prob = bottom[0].data
        bbox_pred = bottom[1].data
        rois = bottom[2].data
        labels = bottom[3].data
        if cfg.TRAIN.BBOX_REG:
            bbox_target = bottom[4].data
            bbox_inside_weights = bottom[5].data
            bbox_outside_weights = bottom[6].data
        else:
            bbox_target = None
            bbox_inside_weights = None
            bbox_outside_weights = None

        flt_min = np.finfo(float).eps
        # classification loss
        loss = [ -1 * np.log(max(x, flt_min)) \
            for x in [cls_prob[i,label] for i, label in enumerate(labels)]]

        if cfg.TRAIN.BBOX_REG:
            # bounding-box regression loss
            # d := w * (b0 - b1)
            # smoothL1(x) = 0.5 * x^2    if |x| < 1
            #               |x| - 0.5    otherwise
            def smoothL1(x):
                if abs(x) < 1:
                    return 0.5 * x * x
                else:
                    return abs(x) - 0.5

            bbox_loss = np.zeros(labels.shape[0])
            for i in np.where(labels > 0 )[0]:
                indices = np.where(bbox_inside_weights[i,:] != 0)[0]
                bbox_loss[i] = sum(bbox_outside_weights[i,indices] * [smoothL1(x) \
                    for x in bbox_inside_weights[i,indices] * (bbox_pred[i,indices] - bbox_target[i,indices])])
            loss += bbox_loss

        blobs = get_ohem_minibatch(loss, rois, labels, bbox_target, \
            bbox_inside_weights, bbox_outside_weights)

        for blob_name, blob in blobs.iteritems():
            top_ind = self._name_to_top_map[blob_name]
            # Reshape net's input blobs
            top[top_ind].reshape(*(blob.shape))
            # Copy data into net's input blobs
            top[top_ind].data[...] = blob.astype(np.float32, copy=False)

    def backward(self, top, propagate_down, bottom):
        """This layer does not propagate gradients."""
        pass

    def reshape(self, bottom, top):
        """Reshaping happens during the call to forward."""
        pass

修改layer.py中的_get_next_minibatch,run函数

    def _get_next_minibatch(self):
        """Return the blobs to be used for the next minibatch.

        If cfg.TRAIN.USE_PREFETCH is True, then blobs will be computed in a
        separate process and made available through self._blob_queue.
        """
        if cfg.TRAIN.USE_PREFETCH:
            return self._blob_queue.get()
        else:
            db_inds = self._get_next_minibatch_inds()
            minibatch_db = [self._roidb[i] for i in db_inds]
            if cfg.TRAIN.USE_OHEM:
                blobs = get_allrois_minibatch(minibatch_db, self._num_classes)
            else:
                blobs = get_minibatch(minibatch_db, self._num_classes)

            return blobs

    def run(self):
        print 'BlobFetcher started'
        while True:
            db_inds = self._get_next_minibatch_inds()
            minibatch_db = [self._roidb[i] for i in db_inds]
            if cfg.TRAIN.USE_OHEM:
                blobs = get_allrois_minibatch(minibatch_db, self._num_classes)
            else:
                blobs = get_minibatch(minibatch_db, self._num_classes)
            self._queue.put(blobs)

在train_faster_rcnn_alt_opt.py中修改

def get_solvers(net_name):
    # Faster R-CNN Alternating Optimization
    n = 'faster_rcnn_alt_opt'
    # Solver for each training stage
    solvers = [[net_name, n, 'stage1_rpn_solver60k80k.pt'],
               [net_name, n, 'stage1_fast_rcnn_ohem_solver30k40k.pt'],
               [net_name, n, 'stage2_rpn_solver60k80k.pt'],
               [net_name, n, 'stage2_fast_rcnn_ohem_solver30k40k.pt']]
    solvers = [os.path.join(cfg.ROOT_DIR, 'models', *s) for s in solvers]
    # Iterations for each training stage
    max_iters = [80000, 40000, 80000, 40000]
    #max_iters = [50, 50, 50, 50]
    # Test prototxt for the RPN
    rpn_test_prototxt = os.path.join(
        cfg.ROOT_DIR, 'models', net_name, n, 'rpn_test.pt')
    return solvers, max_iters, rpn_test_prototxt

def train_rpn(queue=None, imdb_name=None, init_model=None, solver=None,
              max_iters=None, cfg=None):
    """Train a Region Proposal Network in a separate training process.
    """

    # Not using any proposals, just ground-truth boxes
    cfg.TRAIN.USE_OHEM = False

    cfg.TRAIN.HAS_RPN = True
    cfg.TRAIN.BBOX_REG = False  # applies only to Fast R-CNN bbox regression
    cfg.TRAIN.PROPOSAL_METHOD = 'gt'
    cfg.TRAIN.IMS_PER_BATCH = 1
    print 'Init model: {}'.format(init_model)
    print('Using config:')
    pprint.pprint(cfg)

    import caffe
    _init_caffe(cfg)

    roidb, imdb = get_roidb(imdb_name)
    print 'roidb len: {}'.format(len(roidb))
    output_dir = get_output_dir(imdb, None)
    print 'Output will be saved to `{:s}`'.format(output_dir)

    model_paths = train_net(solver, roidb, output_dir,
                            pretrained_model=init_model,
                            max_iters=max_iters)
    # Cleanup all but the final model
    for i in model_paths[:-1]:
        os.remove(i)
    rpn_model_path = model_paths[-1]
    # Send final model path through the multiprocessing queue
    queue.put({'model_path': rpn_model_path})

def train_fast_rcnn(queue=None, imdb_name=None, init_model=None, solver=None,
                    max_iters=None, cfg=None, rpn_file=None):
    """Train a Fast R-CNN using proposals generated by an RPN.
    """

    cfg.TRAIN.USE_OHEM = True
    cfg.TRAIN.BG_THRESH_LO = 0.0
    cfg.ASPECT_GROUPING = False
    cfg.TRAIN.OHEM_USE_NMS = False
    
    cfg.TRAIN.HAS_RPN = False           # not generating prosals on-the-fly
    cfg.TRAIN.PROPOSAL_METHOD = 'rpn'   # use pre-computed RPN proposals instead
    cfg.TRAIN.IMS_PER_BATCH = 1
    print 'Init model: {}'.format(init_model)
    print 'RPN proposals: {}'.format(rpn_file)
    print('Using config:')
    pprint.pprint(cfg)

    import caffe
    _init_caffe(cfg)

    roidb, imdb = get_roidb(imdb_name, rpn_file=rpn_file)
    output_dir = get_output_dir(imdb, None)
    print 'Output will be saved to `{:s}`'.format(output_dir)
    # Train Fast R-CNN
    model_paths = train_net(solver, roidb, output_dir,
                            pretrained_model=init_model,
                            max_iters=max_iters)
    # Cleanup all but the final model
    for i in model_paths[:-1]:
        os.remove(i)
    fast_rcnn_model_path = model_paths[-1]
    # Send Fast R-CNN model path over the multiprocessing queue
    queue.put({'model_path': fast_rcnn_model_path})

项目地址:https://github.com/manutdzou/py-faster-rcnn-OHEM

看我写的辛苦求打赏啊!!!有学术讨论和指点请加微信manutdzou,注明

20


blog comments powered by Disqus