windows编译tensorflow tensorflow单机多卡程序的框架 tensorflow的操作 tensorflow的变量初始化和scope 人体姿态检测 segmentation标注工具 tensorflow模型恢复与inference的模型简化 利用多线程读取数据加快网络训练 tensorflow使用LSTM pytorch examples 利用tensorboard调参 深度学习中的loss函数汇总 纯C++代码实现的faster rcnn tensorflow使用记录 windows下配置caffe_ssd use ubuntu caffe as libs use windows caffe like opencv windows caffe implement caffe model convert to keras model flappyBird DQN Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks Fast-style-transfer tensorflow安装 tensorflow DQN Fully Convolutional Models for Semantic Segmentation Transposed Convolution, Fractionally Strided Convolution or Deconvolution 基于tensorflow的分布式部署 用python实现mlp bp算法 用tensorflow和tflearn搭建经典网络结构 Data Augmentation Tensorflow examples Training Faster RCNN with Online Hard Example Mining 使用Tensorflow做Prisma图像风格迁移 RNN(循环神经网络)推导 深度学习中的稀疏编码思想 利用caffe与lmdb读写图像数据 分析voc2007检测数据 用python写caffe网络配置 ssd开发 将KITTI的数据格式转换为VOC Pascal的xml格式 Faster RCNN 源码分析 在Caffe中建立Python layer 在Caffe中建立C++ layer 为什么CNN反向传播计算梯度时需要将权重旋转180度 Caffe使用教程(下) Caffe使用教程(上) CNN反向传播 Softmax回归 Caffe Ubuntu下环境配置

CNN感受野计算

2017年04月21日

# [filter size, stride, padding]
# Assume the two dimensions are the same
# Each kernel requires the following parameters:
# - k_i: kernel size
# - s_i: stride
# - p_i: padding (if padding is uneven, right padding will higher than left padding; "SAME" option in tensorflow)
#
# Each layer i requires the following parameters to be fully represented:
# - n_i: number of feature (data layer has n_1 = imagesize )
# - j_i: distance (projected to image pixel distance) between center of two adjacent features
# - r_i: receptive field of a feature in layer i
# - start_i: position of the first feature's receptive field in layer i (idx start from 0, negative means the center fall into padding)

import math

convnet = [[11, 4, 0], [3, 2, 0], [5, 1, 2], [3, 2, 0], [3, 1, 1], [3, 1, 1], [3, 1, 1], [3, 2, 0], [6, 1, 0],
           [1, 1, 0]]
layer_names = ['conv1', 'pool1', 'conv2', 'pool2', 'conv3', 'conv4', 'conv5', 'pool5', 'fc6-conv', 'fc7-conv']
imsize = 227


def outFromIn(conv, layerIn):
	n_in = layerIn[0]
	j_in = layerIn[1]
	r_in = layerIn[2]
	start_in = layerIn[3]
	k = conv[0]
	s = conv[1]
	p = conv[2]

	n_out = math.floor((n_in - k + 2 * p) / s) + 1
	actualP = (n_out - 1) * s - n_in + k
	pR = math.ceil(actualP / 2)
	pL = math.floor(actualP / 2)

	j_out = j_in * s
	r_out = r_in + (k - 1) * j_in
	start_out = start_in + ((k - 1) / 2 - pL) * j_in
	return n_out, j_out, r_out, start_out


def printLayer(layer, layer_name):
	print(layer_name + ":")
	print("\t n features: %s \n \t jump: %s \n \t receptive size: %s \t start: %s " % (
	layer[0], layer[1], layer[2], layer[3]))


layerInfos = []
if __name__ == '__main__':
	# first layer is the data layer (image) with n_0 = image size; j_0 = 1; r_0 = 1; and start_0 = 0.5
	print ("-------Net summary------")
	currentLayer = [imsize, 1, 1, 0.5]
	printLayer(currentLayer, "input image")
	for i in range(len(convnet)):
		currentLayer = outFromIn(convnet[i], currentLayer)
		layerInfos.append(currentLayer)
		printLayer(currentLayer, layer_names[i])
	print ("------------------------")
	layer_name = raw_input("Layer name where the feature in: ")
	layer_idx = layer_names.index(layer_name)
	idx_x = int(raw_input("index of the feature in x dimension (from 0)"))
	idx_y = int(raw_input("index of the feature in y dimension (from 0)"))

	n = layerInfos[layer_idx][0]
	j = layerInfos[layer_idx][1]
	r = layerInfos[layer_idx][2]
	start = layerInfos[layer_idx][3]
	assert (idx_x < n)
	assert (idx_y < n)

	print ("receptive field: (%s, %s)" % (r, r))
	print ("center: (%s, %s)" % (start + idx_x * j, start + idx_y * j))

blog comments powered by Disqus